Deprecated (16384): The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead. - /home/brlfuser/public_html/src/Controller/ArtileDetailController.php, line: 73 You can disable deprecation warnings by setting `Error.errorLevel` to `E_ALL & ~E_USER_DEPRECATED` in your config/app.php. [CORE/src/Core/functions.php, line 311]Code Context
trigger_error($message, E_USER_DEPRECATED);
}
$message = 'The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead. - /home/brlfuser/public_html/src/Controller/ArtileDetailController.php, line: 73 You can disable deprecation warnings by setting `Error.errorLevel` to `E_ALL & ~E_USER_DEPRECATED` in your config/app.php.' $stackFrame = (int) 1 $trace = [ (int) 0 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ServerRequest.php', 'line' => (int) 2421, 'function' => 'deprecationWarning', 'args' => [ (int) 0 => 'The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead.' ] ], (int) 1 => [ 'file' => '/home/brlfuser/public_html/src/Controller/ArtileDetailController.php', 'line' => (int) 73, 'function' => 'offsetGet', 'class' => 'Cake\Http\ServerRequest', 'object' => object(Cake\Http\ServerRequest) {}, 'type' => '->', 'args' => [ (int) 0 => 'catslug' ] ], (int) 2 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Controller/Controller.php', 'line' => (int) 610, 'function' => 'printArticle', 'class' => 'App\Controller\ArtileDetailController', 'object' => object(App\Controller\ArtileDetailController) {}, 'type' => '->', 'args' => [] ], (int) 3 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ActionDispatcher.php', 'line' => (int) 120, 'function' => 'invokeAction', 'class' => 'Cake\Controller\Controller', 'object' => object(App\Controller\ArtileDetailController) {}, 'type' => '->', 'args' => [] ], (int) 4 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ActionDispatcher.php', 'line' => (int) 94, 'function' => '_invoke', 'class' => 'Cake\Http\ActionDispatcher', 'object' => object(Cake\Http\ActionDispatcher) {}, 'type' => '->', 'args' => [ (int) 0 => object(App\Controller\ArtileDetailController) {} ] ], (int) 5 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/BaseApplication.php', 'line' => (int) 235, 'function' => 'dispatch', 'class' => 'Cake\Http\ActionDispatcher', 'object' => object(Cake\Http\ActionDispatcher) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 6 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Http\BaseApplication', 'object' => object(App\Application) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 7 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Routing/Middleware/RoutingMiddleware.php', 'line' => (int) 162, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 8 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Routing\Middleware\RoutingMiddleware', 'object' => object(Cake\Routing\Middleware\RoutingMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 9 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Routing/Middleware/AssetMiddleware.php', 'line' => (int) 88, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 10 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Routing\Middleware\AssetMiddleware', 'object' => object(Cake\Routing\Middleware\AssetMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 11 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Middleware/ErrorHandlerMiddleware.php', 'line' => (int) 96, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 12 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Error\Middleware\ErrorHandlerMiddleware', 'object' => object(Cake\Error\Middleware\ErrorHandlerMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 13 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 51, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 14 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Server.php', 'line' => (int) 98, 'function' => 'run', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\MiddlewareQueue) {}, (int) 1 => object(Cake\Http\ServerRequest) {}, (int) 2 => object(Cake\Http\Response) {} ] ], (int) 15 => [ 'file' => '/home/brlfuser/public_html/webroot/index.php', 'line' => (int) 39, 'function' => 'run', 'class' => 'Cake\Http\Server', 'object' => object(Cake\Http\Server) {}, 'type' => '->', 'args' => [] ] ] $frame = [ 'file' => '/home/brlfuser/public_html/src/Controller/ArtileDetailController.php', 'line' => (int) 73, 'function' => 'offsetGet', 'class' => 'Cake\Http\ServerRequest', 'object' => object(Cake\Http\ServerRequest) { trustProxy => false [protected] params => [ [maximum depth reached] ] [protected] data => [[maximum depth reached]] [protected] query => [[maximum depth reached]] [protected] cookies => [ [maximum depth reached] ] [protected] _environment => [ [maximum depth reached] ] [protected] url => 'agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696/print' [protected] base => '' [protected] webroot => '/' [protected] here => '/agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696/print' [protected] trustedProxies => [[maximum depth reached]] [protected] _input => null [protected] _detectors => [ [maximum depth reached] ] [protected] _detectorCache => [ [maximum depth reached] ] [protected] stream => object(Zend\Diactoros\PhpInputStream) {} [protected] uri => object(Zend\Diactoros\Uri) {} [protected] session => object(Cake\Http\Session) {} [protected] attributes => [[maximum depth reached]] [protected] emulatedAttributes => [ [maximum depth reached] ] [protected] uploadedFiles => [[maximum depth reached]] [protected] protocol => null [protected] requestTarget => null [private] deprecatedProperties => [ [maximum depth reached] ] }, 'type' => '->', 'args' => [ (int) 0 => 'catslug' ] ]deprecationWarning - CORE/src/Core/functions.php, line 311 Cake\Http\ServerRequest::offsetGet() - CORE/src/Http/ServerRequest.php, line 2421 App\Controller\ArtileDetailController::printArticle() - APP/Controller/ArtileDetailController.php, line 73 Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 610 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51 Cake\Http\Server::run() - CORE/src/Http/Server.php, line 98
Deprecated (16384): The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead. - /home/brlfuser/public_html/src/Controller/ArtileDetailController.php, line: 74 You can disable deprecation warnings by setting `Error.errorLevel` to `E_ALL & ~E_USER_DEPRECATED` in your config/app.php. [CORE/src/Core/functions.php, line 311]Code Context
trigger_error($message, E_USER_DEPRECATED);
}
$message = 'The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead. - /home/brlfuser/public_html/src/Controller/ArtileDetailController.php, line: 74 You can disable deprecation warnings by setting `Error.errorLevel` to `E_ALL & ~E_USER_DEPRECATED` in your config/app.php.' $stackFrame = (int) 1 $trace = [ (int) 0 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ServerRequest.php', 'line' => (int) 2421, 'function' => 'deprecationWarning', 'args' => [ (int) 0 => 'The ArrayAccess methods will be removed in 4.0.0.Use getParam(), getData() and getQuery() instead.' ] ], (int) 1 => [ 'file' => '/home/brlfuser/public_html/src/Controller/ArtileDetailController.php', 'line' => (int) 74, 'function' => 'offsetGet', 'class' => 'Cake\Http\ServerRequest', 'object' => object(Cake\Http\ServerRequest) {}, 'type' => '->', 'args' => [ (int) 0 => 'artileslug' ] ], (int) 2 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Controller/Controller.php', 'line' => (int) 610, 'function' => 'printArticle', 'class' => 'App\Controller\ArtileDetailController', 'object' => object(App\Controller\ArtileDetailController) {}, 'type' => '->', 'args' => [] ], (int) 3 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ActionDispatcher.php', 'line' => (int) 120, 'function' => 'invokeAction', 'class' => 'Cake\Controller\Controller', 'object' => object(App\Controller\ArtileDetailController) {}, 'type' => '->', 'args' => [] ], (int) 4 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/ActionDispatcher.php', 'line' => (int) 94, 'function' => '_invoke', 'class' => 'Cake\Http\ActionDispatcher', 'object' => object(Cake\Http\ActionDispatcher) {}, 'type' => '->', 'args' => [ (int) 0 => object(App\Controller\ArtileDetailController) {} ] ], (int) 5 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/BaseApplication.php', 'line' => (int) 235, 'function' => 'dispatch', 'class' => 'Cake\Http\ActionDispatcher', 'object' => object(Cake\Http\ActionDispatcher) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 6 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Http\BaseApplication', 'object' => object(App\Application) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 7 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Routing/Middleware/RoutingMiddleware.php', 'line' => (int) 162, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 8 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Routing\Middleware\RoutingMiddleware', 'object' => object(Cake\Routing\Middleware\RoutingMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 9 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Routing/Middleware/AssetMiddleware.php', 'line' => (int) 88, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 10 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Routing\Middleware\AssetMiddleware', 'object' => object(Cake\Routing\Middleware\AssetMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 11 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Middleware/ErrorHandlerMiddleware.php', 'line' => (int) 96, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 12 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 65, 'function' => '__invoke', 'class' => 'Cake\Error\Middleware\ErrorHandlerMiddleware', 'object' => object(Cake\Error\Middleware\ErrorHandlerMiddleware) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {}, (int) 2 => object(Cake\Http\Runner) {} ] ], (int) 13 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Runner.php', 'line' => (int) 51, 'function' => '__invoke', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\ServerRequest) {}, (int) 1 => object(Cake\Http\Response) {} ] ], (int) 14 => [ 'file' => '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Http/Server.php', 'line' => (int) 98, 'function' => 'run', 'class' => 'Cake\Http\Runner', 'object' => object(Cake\Http\Runner) {}, 'type' => '->', 'args' => [ (int) 0 => object(Cake\Http\MiddlewareQueue) {}, (int) 1 => object(Cake\Http\ServerRequest) {}, (int) 2 => object(Cake\Http\Response) {} ] ], (int) 15 => [ 'file' => '/home/brlfuser/public_html/webroot/index.php', 'line' => (int) 39, 'function' => 'run', 'class' => 'Cake\Http\Server', 'object' => object(Cake\Http\Server) {}, 'type' => '->', 'args' => [] ] ] $frame = [ 'file' => '/home/brlfuser/public_html/src/Controller/ArtileDetailController.php', 'line' => (int) 74, 'function' => 'offsetGet', 'class' => 'Cake\Http\ServerRequest', 'object' => object(Cake\Http\ServerRequest) { trustProxy => false [protected] params => [ [maximum depth reached] ] [protected] data => [[maximum depth reached]] [protected] query => [[maximum depth reached]] [protected] cookies => [ [maximum depth reached] ] [protected] _environment => [ [maximum depth reached] ] [protected] url => 'agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696/print' [protected] base => '' [protected] webroot => '/' [protected] here => '/agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696/print' [protected] trustedProxies => [[maximum depth reached]] [protected] _input => null [protected] _detectors => [ [maximum depth reached] ] [protected] _detectorCache => [ [maximum depth reached] ] [protected] stream => object(Zend\Diactoros\PhpInputStream) {} [protected] uri => object(Zend\Diactoros\Uri) {} [protected] session => object(Cake\Http\Session) {} [protected] attributes => [[maximum depth reached]] [protected] emulatedAttributes => [ [maximum depth reached] ] [protected] uploadedFiles => [[maximum depth reached]] [protected] protocol => null [protected] requestTarget => null [private] deprecatedProperties => [ [maximum depth reached] ] }, 'type' => '->', 'args' => [ (int) 0 => 'artileslug' ] ]deprecationWarning - CORE/src/Core/functions.php, line 311 Cake\Http\ServerRequest::offsetGet() - CORE/src/Http/ServerRequest.php, line 2421 App\Controller\ArtileDetailController::printArticle() - APP/Controller/ArtileDetailController.php, line 74 Cake\Controller\Controller::invokeAction() - CORE/src/Controller/Controller.php, line 610 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 120 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51 Cake\Http\Server::run() - CORE/src/Http/Server.php, line 98
Warning (512): Unable to emit headers. Headers sent in file=/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Debugger.php line=853 [CORE/src/Http/ResponseEmitter.php, line 48]Code Contextif (Configure::read('debug')) {
trigger_error($message, E_USER_WARNING);
} else {
$response = object(Cake\Http\Response) { 'status' => (int) 200, 'contentType' => 'text/html', 'headers' => [ 'Content-Type' => [ [maximum depth reached] ] ], 'file' => null, 'fileRange' => [], 'cookies' => object(Cake\Http\Cookie\CookieCollection) {}, 'cacheDirectives' => [], 'body' => '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <link rel="canonical" href="https://im4change.in/<pre class="cake-error"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-trace').style.display = (document.getElementById('cakeErr67f063607d26d-trace').style.display == 'none' ? '' : 'none');"><b>Notice</b> (8)</a>: Undefined variable: urlPrefix [<b>APP/Template/Layout/printlayout.ctp</b>, line <b>8</b>]<div id="cakeErr67f063607d26d-trace" class="cake-stack-trace" style="display: none;"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-code').style.display = (document.getElementById('cakeErr67f063607d26d-code').style.display == 'none' ? '' : 'none')">Code</a> <a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-context').style.display = (document.getElementById('cakeErr67f063607d26d-context').style.display == 'none' ? '' : 'none')">Context</a><pre id="cakeErr67f063607d26d-code" class="cake-code-dump" style="display: none;"><code><span style="color: #000000"><span style="color: #0000BB"></span><span style="color: #007700"><</span><span style="color: #0000BB">head</span><span style="color: #007700">> </span></span></code> <span class="code-highlight"><code><span style="color: #000000"> <link rel="canonical" href="<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">Configure</span><span style="color: #007700">::</span><span style="color: #0000BB">read</span><span style="color: #007700">(</span><span style="color: #DD0000">'SITE_URL'</span><span style="color: #007700">); </span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$urlPrefix</span><span style="color: #007700">;</span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">category</span><span style="color: #007700">-></span><span style="color: #0000BB">slug</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>/<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">seo_url</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>.html"/> </span></code></span> <code><span style="color: #000000"><span style="color: #0000BB"> </span><span style="color: #007700"><</span><span style="color: #0000BB">meta http</span><span style="color: #007700">-</span><span style="color: #0000BB">equiv</span><span style="color: #007700">=</span><span style="color: #DD0000">"Content-Type" </span><span style="color: #0000BB">content</span><span style="color: #007700">=</span><span style="color: #DD0000">"text/html; charset=utf-8"</span><span style="color: #007700">/> </span></span></code></pre><pre id="cakeErr67f063607d26d-context" class="cake-context" style="display: none;">$viewFile = '/home/brlfuser/public_html/src/Template/Layout/printlayout.ctp' $dataForView = [ 'article_current' => object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ [maximum depth reached] ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ [maximum depth reached] ], '[dirty]' => [[maximum depth reached]], '[original]' => [[maximum depth reached]], '[virtual]' => [[maximum depth reached]], '[hasErrors]' => false, '[errors]' => [[maximum depth reached]], '[invalid]' => [[maximum depth reached]], '[repository]' => 'Articles' }, 'articleid' => (int) 35589, 'metaTitle' => 'Agriculture | Towards solar-powered agriculture -Abhishek Jain', 'metaKeywords' => 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation', 'metaDesc' => ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...', 'disp' => '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>', 'lang' => 'English', 'SITE_URL' => 'https://im4change.in/', 'site_title' => 'im4change', 'adminprix' => 'admin' ] $article_current = object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ (int) 0 => object(Cake\ORM\Entity) {}, (int) 1 => object(Cake\ORM\Entity) {}, (int) 2 => object(Cake\ORM\Entity) {}, (int) 3 => object(Cake\ORM\Entity) {} ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Articles' } $articleid = (int) 35589 $metaTitle = 'Agriculture | Towards solar-powered agriculture -Abhishek Jain' $metaKeywords = 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation' $metaDesc = ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...' $disp = '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>' $lang = 'English' $SITE_URL = 'https://im4change.in/' $site_title = 'im4change' $adminprix = 'admin'</pre><pre class="stack-trace">include - APP/Template/Layout/printlayout.ctp, line 8 Cake\View\View::_evaluate() - CORE/src/View/View.php, line 1413 Cake\View\View::_render() - CORE/src/View/View.php, line 1374 Cake\View\View::renderLayout() - CORE/src/View/View.php, line 927 Cake\View\View::render() - CORE/src/View/View.php, line 885 Cake\Controller\Controller::render() - CORE/src/Controller/Controller.php, line 791 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 126 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51</pre></div></pre>agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696.html"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link href="https://im4change.in/css/control.css" rel="stylesheet" type="text/css" media="all"/> <title>Agriculture | Towards solar-powered agriculture -Abhishek Jain | Im4change.org</title> <meta name="description" content=" -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the..."/> <script src="https://im4change.in/js/jquery-1.10.2.js"></script> <script type="text/javascript" src="https://im4change.in/js/jquery-migrate.min.js"></script> <script language="javascript" type="text/javascript"> $(document).ready(function () { var img = $("img")[0]; // Get my img elem var pic_real_width, pic_real_height; $("<img/>") // Make in memory copy of image to avoid css issues .attr("src", $(img).attr("src")) .load(function () { pic_real_width = this.width; // Note: $(this).width() will not pic_real_height = this.height; // work for in memory images. }); }); </script> <style type="text/css"> @media screen { div.divFooter { display: block; } } @media print { .printbutton { display: none !important; } } </style> </head> <body> <table cellpadding="0" cellspacing="0" border="0" width="98%" align="center"> <tr> <td class="top_bg"> <div class="divFooter"> <img src="https://im4change.in/images/logo1.jpg" height="59" border="0" alt="Resource centre on India's rural distress" style="padding-top:14px;"/> </div> </td> </tr> <tr> <td id="topspace"> </td> </tr> <tr id="topspace"> <td> </td> </tr> <tr> <td height="50" style="border-bottom:1px solid #000; padding-top:10px;" class="printbutton"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> <tr> <td width="100%"> <h1 class="news_headlines" style="font-style:normal"> <strong>Towards solar-powered agriculture -Abhishek Jain</strong></h1> </td> </tr> <tr> <td width="100%" style="font-family:Arial, 'Segoe Script', 'Segoe UI', sans-serif, serif"><font size="3"> <div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify"> </div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div> </font> </td> </tr> <tr> <td> </td> </tr> <tr> <td height="50" style="border-top:1px solid #000; border-bottom:1px solid #000;padding-top:10px;"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> </table></body> </html>' } $maxBufferLength = (int) 8192 $file = '/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Debugger.php' $line = (int) 853 $message = 'Unable to emit headers. Headers sent in file=/home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Debugger.php line=853'Cake\Http\ResponseEmitter::emit() - CORE/src/Http/ResponseEmitter.php, line 48 Cake\Http\Server::emit() - CORE/src/Http/Server.php, line 141 [main] - ROOT/webroot/index.php, line 39
Warning (2): Cannot modify header information - headers already sent by (output started at /home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Debugger.php:853) [CORE/src/Http/ResponseEmitter.php, line 148]Code Context$response->getStatusCode(),
($reasonPhrase ? ' ' . $reasonPhrase : '')
));
$response = object(Cake\Http\Response) { 'status' => (int) 200, 'contentType' => 'text/html', 'headers' => [ 'Content-Type' => [ [maximum depth reached] ] ], 'file' => null, 'fileRange' => [], 'cookies' => object(Cake\Http\Cookie\CookieCollection) {}, 'cacheDirectives' => [], 'body' => '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <link rel="canonical" href="https://im4change.in/<pre class="cake-error"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-trace').style.display = (document.getElementById('cakeErr67f063607d26d-trace').style.display == 'none' ? '' : 'none');"><b>Notice</b> (8)</a>: Undefined variable: urlPrefix [<b>APP/Template/Layout/printlayout.ctp</b>, line <b>8</b>]<div id="cakeErr67f063607d26d-trace" class="cake-stack-trace" style="display: none;"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-code').style.display = (document.getElementById('cakeErr67f063607d26d-code').style.display == 'none' ? '' : 'none')">Code</a> <a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-context').style.display = (document.getElementById('cakeErr67f063607d26d-context').style.display == 'none' ? '' : 'none')">Context</a><pre id="cakeErr67f063607d26d-code" class="cake-code-dump" style="display: none;"><code><span style="color: #000000"><span style="color: #0000BB"></span><span style="color: #007700"><</span><span style="color: #0000BB">head</span><span style="color: #007700">> </span></span></code> <span class="code-highlight"><code><span style="color: #000000"> <link rel="canonical" href="<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">Configure</span><span style="color: #007700">::</span><span style="color: #0000BB">read</span><span style="color: #007700">(</span><span style="color: #DD0000">'SITE_URL'</span><span style="color: #007700">); </span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$urlPrefix</span><span style="color: #007700">;</span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">category</span><span style="color: #007700">-></span><span style="color: #0000BB">slug</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>/<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">seo_url</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>.html"/> </span></code></span> <code><span style="color: #000000"><span style="color: #0000BB"> </span><span style="color: #007700"><</span><span style="color: #0000BB">meta http</span><span style="color: #007700">-</span><span style="color: #0000BB">equiv</span><span style="color: #007700">=</span><span style="color: #DD0000">"Content-Type" </span><span style="color: #0000BB">content</span><span style="color: #007700">=</span><span style="color: #DD0000">"text/html; charset=utf-8"</span><span style="color: #007700">/> </span></span></code></pre><pre id="cakeErr67f063607d26d-context" class="cake-context" style="display: none;">$viewFile = '/home/brlfuser/public_html/src/Template/Layout/printlayout.ctp' $dataForView = [ 'article_current' => object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ [maximum depth reached] ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ [maximum depth reached] ], '[dirty]' => [[maximum depth reached]], '[original]' => [[maximum depth reached]], '[virtual]' => [[maximum depth reached]], '[hasErrors]' => false, '[errors]' => [[maximum depth reached]], '[invalid]' => [[maximum depth reached]], '[repository]' => 'Articles' }, 'articleid' => (int) 35589, 'metaTitle' => 'Agriculture | Towards solar-powered agriculture -Abhishek Jain', 'metaKeywords' => 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation', 'metaDesc' => ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...', 'disp' => '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>', 'lang' => 'English', 'SITE_URL' => 'https://im4change.in/', 'site_title' => 'im4change', 'adminprix' => 'admin' ] $article_current = object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ (int) 0 => object(Cake\ORM\Entity) {}, (int) 1 => object(Cake\ORM\Entity) {}, (int) 2 => object(Cake\ORM\Entity) {}, (int) 3 => object(Cake\ORM\Entity) {} ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Articles' } $articleid = (int) 35589 $metaTitle = 'Agriculture | Towards solar-powered agriculture -Abhishek Jain' $metaKeywords = 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation' $metaDesc = ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...' $disp = '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>' $lang = 'English' $SITE_URL = 'https://im4change.in/' $site_title = 'im4change' $adminprix = 'admin'</pre><pre class="stack-trace">include - APP/Template/Layout/printlayout.ctp, line 8 Cake\View\View::_evaluate() - CORE/src/View/View.php, line 1413 Cake\View\View::_render() - CORE/src/View/View.php, line 1374 Cake\View\View::renderLayout() - CORE/src/View/View.php, line 927 Cake\View\View::render() - CORE/src/View/View.php, line 885 Cake\Controller\Controller::render() - CORE/src/Controller/Controller.php, line 791 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 126 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51</pre></div></pre>agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696.html"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link href="https://im4change.in/css/control.css" rel="stylesheet" type="text/css" media="all"/> <title>Agriculture | Towards solar-powered agriculture -Abhishek Jain | Im4change.org</title> <meta name="description" content=" -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the..."/> <script src="https://im4change.in/js/jquery-1.10.2.js"></script> <script type="text/javascript" src="https://im4change.in/js/jquery-migrate.min.js"></script> <script language="javascript" type="text/javascript"> $(document).ready(function () { var img = $("img")[0]; // Get my img elem var pic_real_width, pic_real_height; $("<img/>") // Make in memory copy of image to avoid css issues .attr("src", $(img).attr("src")) .load(function () { pic_real_width = this.width; // Note: $(this).width() will not pic_real_height = this.height; // work for in memory images. }); }); </script> <style type="text/css"> @media screen { div.divFooter { display: block; } } @media print { .printbutton { display: none !important; } } </style> </head> <body> <table cellpadding="0" cellspacing="0" border="0" width="98%" align="center"> <tr> <td class="top_bg"> <div class="divFooter"> <img src="https://im4change.in/images/logo1.jpg" height="59" border="0" alt="Resource centre on India's rural distress" style="padding-top:14px;"/> </div> </td> </tr> <tr> <td id="topspace"> </td> </tr> <tr id="topspace"> <td> </td> </tr> <tr> <td height="50" style="border-bottom:1px solid #000; padding-top:10px;" class="printbutton"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> <tr> <td width="100%"> <h1 class="news_headlines" style="font-style:normal"> <strong>Towards solar-powered agriculture -Abhishek Jain</strong></h1> </td> </tr> <tr> <td width="100%" style="font-family:Arial, 'Segoe Script', 'Segoe UI', sans-serif, serif"><font size="3"> <div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify"> </div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div> </font> </td> </tr> <tr> <td> </td> </tr> <tr> <td height="50" style="border-top:1px solid #000; border-bottom:1px solid #000;padding-top:10px;"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> </table></body> </html>' } $reasonPhrase = 'OK'header - [internal], line ?? Cake\Http\ResponseEmitter::emitStatusLine() - CORE/src/Http/ResponseEmitter.php, line 148 Cake\Http\ResponseEmitter::emit() - CORE/src/Http/ResponseEmitter.php, line 54 Cake\Http\Server::emit() - CORE/src/Http/Server.php, line 141 [main] - ROOT/webroot/index.php, line 39
Warning (2): Cannot modify header information - headers already sent by (output started at /home/brlfuser/public_html/vendor/cakephp/cakephp/src/Error/Debugger.php:853) [CORE/src/Http/ResponseEmitter.php, line 181]Notice (8): Undefined variable: urlPrefix [APP/Template/Layout/printlayout.ctp, line 8]Code Context$value
), $first);
$first = false;
$response = object(Cake\Http\Response) { 'status' => (int) 200, 'contentType' => 'text/html', 'headers' => [ 'Content-Type' => [ [maximum depth reached] ] ], 'file' => null, 'fileRange' => [], 'cookies' => object(Cake\Http\Cookie\CookieCollection) {}, 'cacheDirectives' => [], 'body' => '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <link rel="canonical" href="https://im4change.in/<pre class="cake-error"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-trace').style.display = (document.getElementById('cakeErr67f063607d26d-trace').style.display == 'none' ? '' : 'none');"><b>Notice</b> (8)</a>: Undefined variable: urlPrefix [<b>APP/Template/Layout/printlayout.ctp</b>, line <b>8</b>]<div id="cakeErr67f063607d26d-trace" class="cake-stack-trace" style="display: none;"><a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-code').style.display = (document.getElementById('cakeErr67f063607d26d-code').style.display == 'none' ? '' : 'none')">Code</a> <a href="javascript:void(0);" onclick="document.getElementById('cakeErr67f063607d26d-context').style.display = (document.getElementById('cakeErr67f063607d26d-context').style.display == 'none' ? '' : 'none')">Context</a><pre id="cakeErr67f063607d26d-code" class="cake-code-dump" style="display: none;"><code><span style="color: #000000"><span style="color: #0000BB"></span><span style="color: #007700"><</span><span style="color: #0000BB">head</span><span style="color: #007700">> </span></span></code> <span class="code-highlight"><code><span style="color: #000000"> <link rel="canonical" href="<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">Configure</span><span style="color: #007700">::</span><span style="color: #0000BB">read</span><span style="color: #007700">(</span><span style="color: #DD0000">'SITE_URL'</span><span style="color: #007700">); </span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$urlPrefix</span><span style="color: #007700">;</span><span style="color: #0000BB">?><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">category</span><span style="color: #007700">-></span><span style="color: #0000BB">slug</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>/<span style="color: #0000BB"><?php </span><span style="color: #007700">echo </span><span style="color: #0000BB">$article_current</span><span style="color: #007700">-></span><span style="color: #0000BB">seo_url</span><span style="color: #007700">; </span><span style="color: #0000BB">?></span>.html"/> </span></code></span> <code><span style="color: #000000"><span style="color: #0000BB"> </span><span style="color: #007700"><</span><span style="color: #0000BB">meta http</span><span style="color: #007700">-</span><span style="color: #0000BB">equiv</span><span style="color: #007700">=</span><span style="color: #DD0000">"Content-Type" </span><span style="color: #0000BB">content</span><span style="color: #007700">=</span><span style="color: #DD0000">"text/html; charset=utf-8"</span><span style="color: #007700">/> </span></span></code></pre><pre id="cakeErr67f063607d26d-context" class="cake-context" style="display: none;">$viewFile = '/home/brlfuser/public_html/src/Template/Layout/printlayout.ctp' $dataForView = [ 'article_current' => object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ [maximum depth reached] ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ [maximum depth reached] ], '[dirty]' => [[maximum depth reached]], '[original]' => [[maximum depth reached]], '[virtual]' => [[maximum depth reached]], '[hasErrors]' => false, '[errors]' => [[maximum depth reached]], '[invalid]' => [[maximum depth reached]], '[repository]' => 'Articles' }, 'articleid' => (int) 35589, 'metaTitle' => 'Agriculture | Towards solar-powered agriculture -Abhishek Jain', 'metaKeywords' => 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation', 'metaDesc' => ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...', 'disp' => '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>', 'lang' => 'English', 'SITE_URL' => 'https://im4change.in/', 'site_title' => 'im4change', 'adminprix' => 'admin' ] $article_current = object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> &nbsp; </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ (int) 0 => object(Cake\ORM\Entity) {}, (int) 1 => object(Cake\ORM\Entity) {}, (int) 2 => object(Cake\ORM\Entity) {}, (int) 3 => object(Cake\ORM\Entity) {} ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Articles' } $articleid = (int) 35589 $metaTitle = 'Agriculture | Towards solar-powered agriculture -Abhishek Jain' $metaKeywords = 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation' $metaDesc = ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...' $disp = '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers&rsquo; perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers&rsquo; willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 &mdash; setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify">&nbsp;</div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>' $lang = 'English' $SITE_URL = 'https://im4change.in/' $site_title = 'im4change' $adminprix = 'admin'</pre><pre class="stack-trace">include - APP/Template/Layout/printlayout.ctp, line 8 Cake\View\View::_evaluate() - CORE/src/View/View.php, line 1413 Cake\View\View::_render() - CORE/src/View/View.php, line 1374 Cake\View\View::renderLayout() - CORE/src/View/View.php, line 927 Cake\View\View::render() - CORE/src/View/View.php, line 885 Cake\Controller\Controller::render() - CORE/src/Controller/Controller.php, line 791 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 126 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51</pre></div></pre>agriculture/towards-solar-powered-agriculture-abhishek-jain-4683696.html"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link href="https://im4change.in/css/control.css" rel="stylesheet" type="text/css" media="all"/> <title>Agriculture | Towards solar-powered agriculture -Abhishek Jain | Im4change.org</title> <meta name="description" content=" -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the..."/> <script src="https://im4change.in/js/jquery-1.10.2.js"></script> <script type="text/javascript" src="https://im4change.in/js/jquery-migrate.min.js"></script> <script language="javascript" type="text/javascript"> $(document).ready(function () { var img = $("img")[0]; // Get my img elem var pic_real_width, pic_real_height; $("<img/>") // Make in memory copy of image to avoid css issues .attr("src", $(img).attr("src")) .load(function () { pic_real_width = this.width; // Note: $(this).width() will not pic_real_height = this.height; // work for in memory images. }); }); </script> <style type="text/css"> @media screen { div.divFooter { display: block; } } @media print { .printbutton { display: none !important; } } </style> </head> <body> <table cellpadding="0" cellspacing="0" border="0" width="98%" align="center"> <tr> <td class="top_bg"> <div class="divFooter"> <img src="https://im4change.in/images/logo1.jpg" height="59" border="0" alt="Resource centre on India's rural distress" style="padding-top:14px;"/> </div> </td> </tr> <tr> <td id="topspace"> </td> </tr> <tr id="topspace"> <td> </td> </tr> <tr> <td height="50" style="border-bottom:1px solid #000; padding-top:10px;" class="printbutton"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> <tr> <td width="100%"> <h1 class="news_headlines" style="font-style:normal"> <strong>Towards solar-powered agriculture -Abhishek Jain</strong></h1> </td> </tr> <tr> <td width="100%" style="font-family:Arial, 'Segoe Script', 'Segoe UI', sans-serif, serif"><font size="3"> <div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify"> </div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div> </font> </td> </tr> <tr> <td> </td> </tr> <tr> <td height="50" style="border-top:1px solid #000; border-bottom:1px solid #000;padding-top:10px;"> <form><input type="button" value=" Print this page " onclick="window.print();return false;"/></form> </td> </tr> </table></body> </html>' } $cookies = [] $values = [ (int) 0 => 'text/html; charset=UTF-8' ] $name = 'Content-Type' $first = true $value = 'text/html; charset=UTF-8'header - [internal], line ?? Cake\Http\ResponseEmitter::emitHeaders() - CORE/src/Http/ResponseEmitter.php, line 181 Cake\Http\ResponseEmitter::emit() - CORE/src/Http/ResponseEmitter.php, line 55 Cake\Http\Server::emit() - CORE/src/Http/Server.php, line 141 [main] - ROOT/webroot/index.php, line 39
<head>
<link rel="canonical" href="<?php echo Configure::read('SITE_URL'); ?><?php echo $urlPrefix;?><?php echo $article_current->category->slug; ?>/<?php echo $article_current->seo_url; ?>.html"/>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
$viewFile = '/home/brlfuser/public_html/src/Template/Layout/printlayout.ctp' $dataForView = [ 'article_current' => object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ [maximum depth reached] ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ [maximum depth reached] ], '[dirty]' => [[maximum depth reached]], '[original]' => [[maximum depth reached]], '[virtual]' => [[maximum depth reached]], '[hasErrors]' => false, '[errors]' => [[maximum depth reached]], '[invalid]' => [[maximum depth reached]], '[repository]' => 'Articles' }, 'articleid' => (int) 35589, 'metaTitle' => 'Agriculture | Towards solar-powered agriculture -Abhishek Jain', 'metaKeywords' => 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation', 'metaDesc' => ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...', 'disp' => '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify"> </div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>', 'lang' => 'English', 'SITE_URL' => 'https://im4change.in/', 'site_title' => 'im4change', 'adminprix' => 'admin' ] $article_current = object(App\Model\Entity\Article) { 'id' => (int) 35589, 'title' => 'Towards solar-powered agriculture -Abhishek Jain', 'subheading' => '', 'description' => '<div align="justify"> -The Hindu<br /> <br /> <em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /> </em><br /> In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /> <br /> <em>Case studies<br /> </em><br /> Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /> <br /> Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /> <br /> In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /> <br /> <em>What can be done<br /> </em><br /> At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /> <br /> Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /> <br /> Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /> <br /> Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /> <br /> Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /> <br /> Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /> <br /> Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /> <br /> Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /> <br /> <em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em> </div> <div align="justify"> </div> <div align="justify"> <em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /> </div>', 'credit_writer' => 'The Hindu, 19 January, 2018, http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true', 'article_img' => '', 'article_img_thumb' => '', 'status' => (int) 1, 'show_on_home' => (int) 1, 'lang' => 'EN', 'category_id' => (int) 22, 'tag_keyword' => '', 'seo_url' => 'towards-solar-powered-agriculture-abhishek-jain-4683696', 'meta_title' => null, 'meta_keywords' => null, 'meta_description' => null, 'noindex' => (int) 0, 'publish_date' => object(Cake\I18n\FrozenDate) {}, 'most_visit_section_id' => null, 'article_big_img' => null, 'liveid' => (int) 4683696, 'created' => object(Cake\I18n\FrozenTime) {}, 'modified' => object(Cake\I18n\FrozenTime) {}, 'edate' => '', 'tags' => [ (int) 0 => object(Cake\ORM\Entity) {}, (int) 1 => object(Cake\ORM\Entity) {}, (int) 2 => object(Cake\ORM\Entity) {}, (int) 3 => object(Cake\ORM\Entity) {} ], 'category' => object(App\Model\Entity\Category) {}, '[new]' => false, '[accessible]' => [ '*' => true, 'id' => false ], '[dirty]' => [], '[original]' => [], '[virtual]' => [], '[hasErrors]' => false, '[errors]' => [], '[invalid]' => [], '[repository]' => 'Articles' } $articleid = (int) 35589 $metaTitle = 'Agriculture | Towards solar-powered agriculture -Abhishek Jain' $metaKeywords = 'Solar Pumpsets,Solar Water Pumps,Solar Energy,Irrigation' $metaDesc = ' -The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the...' $disp = '<div align="justify">-The Hindu<br /><br /><em>India must exploit the potential of this technology to help farmers meet irrigation needs<br /></em><br />In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology?<br /><br /><em>Case studies<br /></em><br />Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps.<br /><br />Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches.<br /><br />In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns.<br /><br /><em>What can be done<br /></em><br />At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs.<br /><br />Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge.<br /><br />Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand.<br /><br />Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers.<br /><br />Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices.<br /><br />Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water.<br /><br />Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy.<br /><br />Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously.<br /><br /><em>Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in</em></div><div align="justify"> </div><div align="justify"><em>The Hindu, 19 January, 2018, please <a href="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true" title="http://www.thehindu.com/opinion/op-ed/towards-solar-powered-agriculture/article22466545.ece?homepage=true">click here</a> to access </em><br /></div>' $lang = 'English' $SITE_URL = 'https://im4change.in/' $site_title = 'im4change' $adminprix = 'admin'
include - APP/Template/Layout/printlayout.ctp, line 8 Cake\View\View::_evaluate() - CORE/src/View/View.php, line 1413 Cake\View\View::_render() - CORE/src/View/View.php, line 1374 Cake\View\View::renderLayout() - CORE/src/View/View.php, line 927 Cake\View\View::render() - CORE/src/View/View.php, line 885 Cake\Controller\Controller::render() - CORE/src/Controller/Controller.php, line 791 Cake\Http\ActionDispatcher::_invoke() - CORE/src/Http/ActionDispatcher.php, line 126 Cake\Http\ActionDispatcher::dispatch() - CORE/src/Http/ActionDispatcher.php, line 94 Cake\Http\BaseApplication::__invoke() - CORE/src/Http/BaseApplication.php, line 235 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\RoutingMiddleware::__invoke() - CORE/src/Routing/Middleware/RoutingMiddleware.php, line 162 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Routing\Middleware\AssetMiddleware::__invoke() - CORE/src/Routing/Middleware/AssetMiddleware.php, line 88 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Error\Middleware\ErrorHandlerMiddleware::__invoke() - CORE/src/Error/Middleware/ErrorHandlerMiddleware.php, line 96 Cake\Http\Runner::__invoke() - CORE/src/Http/Runner.php, line 65 Cake\Http\Runner::run() - CORE/src/Http/Runner.php, line 51
![]() |
Towards solar-powered agriculture -Abhishek Jain |
-The Hindu India must exploit the potential of this technology to help farmers meet irrigation needs In the past few years, solar pumps have consistently piqued the interest of various bureaucrats and politicians. The Prime Minister spoke about solar pumps from the ramparts of the Red Fort in 2016. There is no shortage of ideas which the Centre, States, civil society organisations, and enterprises are adopting to enhance penetration of solar for irrigation. But how should India proceed with this impactful technology? Case studies Maharashtra is solarising its agricultural feeders by installing solar power plants at the substation level, through competitive bidding. Karnataka is promoting solar pumps for existing grid-connected farmers under a net-metering regime, allowing them to generate additional income by feeding back surplus energy into the grid. In eastern States, GIZ, a German development agency, has piloted community ownership models providing water-as-a-service using solar pumps. Despite the diversity of approaches and significant government subsidies, only about 1,42,000 pumps have been deployed till date against a target of one million pumps by 2021. Such limited demand, in a country with 132 million farmers and 28 million existing irrigation pumps, calls for a reflection on existing deployment approaches. In India, 53% of the net-sown area is still rain-fed. Solar pumps hold potential to enhance irrigation access, advance low-carbon agriculture, reduce the burden of rising electricity subsidies, and improve the resilience of farmers against a changing climate. But farmers’ perspectives have to be considered and the local context appreciated when deploying the technology to maximise economic returns. What can be done At the Council on Energy, Environment and Water (CEEW), we have published three new research studies. I propose seven takeaways for the government to consider while promoting solar for irrigation. First, target marginal farmers with smaller solar pumps, particularly in areas with good groundwater development potential. Our research, based on a recent primary survey of 1,600 farmers in Uttar Pradesh, revealed that close to 60% of marginal farmers relied on buying water, the costliest option for irrigation, or on renting pumps to meet their needs. Second, couple solar pump deployment with micro-irrigation and water harvesting interventions at the farm and community levels. While lack of irrigation is a major bottleneck, 30% of farmers reported limited water availability for irrigation as a challenge. Third, focus on technology demonstration and deploy at least five solar pumps in each block of the country. CEEW research suggests that such efforts could have a profound effect on farmers’ willingness to adopt solar pumps and spur bottom-up demand. Fourth, in regions with already good penetration of electric pumps, prefer feeder solarisation through competitive bidding over solarisation of individual pumps. A comparative economic analysis finds that solarising individual grid-connected pumps is the costliest approach for the government to expand irrigation cover, while not being the most attractive option for farmers. Fifth, in regions with prevailing local water markets, promote community-owned solar pumps. CEEW research finds that while joint ownership drew interest from 20% of farmers, close to 80% of them were interested in buying water from a community-owned or enterprise-owned solar pump at competitive prices. Sixth, encourage sharing of solar pumps among farmers through farmer extension programmes. Given zero marginal cost of pumping with solar, water sharing, already a prevalent practice in many parts of the country, helps put a marginal price to the water. Seventh, provide interest-subsidy to farmers combined with reduced capital subsidy to enable large-scale deployment of solar pumps in a shorter span of time. Such an approach would cover a greater number of farmers, helping them reap the benefits of solar pumps sooner, and increase overall returns to the economy. Guided by on-ground experiences and an expanding body of research, the government should continuously improve and innovate its support mechanisms on solar for irrigation. India must exploit the potential of this decentralised technology to achieve the dual national targets of 100 GW of solar and doubling farmers income by 2022 — setting a world-class example of greening the economy and overcoming its developmental challenges, simultaneously. Abhishek Jain is a Senior Programme Lead at the CEEW, an independent not-for-profit policy research organisation. Email: abhishek.jain@ceew.in The Hindu, 19 January, 2018, please click here to access
|